Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ability to apply data-driven design principles to customize new CI investment to best serve the intended community as well as provide fact-based justification for its need is critical given the important role it plays in research and economic development and its high cost. Here we describe a data driven approach to CI sys- tem design based on workload analyses obtained using the popular open-source CI management tool Open XDMoD, and how it was leveraged in a procurement to provide end-users with an additional 5.6 million CPU hours annually, with subsequent procurements following similar design goals. In addition to system design, we demonstrate Open XDMoD’s utility in providing fact-based justifi- cation for the CI procurement through usage metrics of existing CI resources.more » « lessFree, publicly-accessible full text available July 18, 2026
-
The engineering samples of the NVIDIA Grace CPU Superchip and NVIDIA Grace Hopper Superchips were tested using different benchmarks and scientific applications. The benchmarks include HPCC and HPCG. The real application-based benchmark includes AI-Benchmark-Alpha (a TensorFlow benchmark), Gromacs, OpenFOAM, and ROMS. The performance was compared to multiple Intel, AMD, ARM CPUs and several x86 with NVIDIA GPU systems. A brief energy efficiency estimate was performed based on TDP values. We found that in HPCC benchmark tests, the per-core performance of Grace is similar to or faster than AMD Milan cores, and the high core count often allows NVIDIA Grace CPU Superchip to have per-node performance similar to Intel Sapphire Rapids with High Bandwidth Memory: slower in matrix multiplication (by 17%) and FFT (by 6%), faster in Linpack (by 9%)). In scientific applications, the NVIDIA Grace CPU Superchip performance is slower by 6% to 18% in Gromacs, faster by 7% in OpenFOAM, and right between HBM and DDR modes of Intel Sapphire Rapids in ROMS. The combined CPU-GPU performance in Gromacs is significantly faster (by 20% to 117% faster) than any tested x86-NVIDIA GPU system. Overall, the new NVIDIA Grace Hopper Superchip and NVIDIA Grace CPU Superchip Superchip are high-performance and most likely energy-efficient solutions for HPC centers.more » « less
An official website of the United States government
